- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Asudeh, Abolfazl (3)
-
Erfanian, Mahdi (3)
-
Shahbazi, Nima (2)
-
Jagadish, H V (1)
-
Nargesian, Fatemeh (1)
-
Srivastava, Divesh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Potential harms from the under-representation of minorities in data, particularly in multi-modal settings, is a well-recognized concern. While there has been extensive effort in detecting such under-representation, resolution has remained a challenge. With recent generative AI advancements, large language and foundation models have emerged as versatile tools across various domains. In this paper, we propose Chameleon, a system that efficiently utilizes these tools to augment a dataset with minimal addition of synthetically generated tuples to enhance the coverage of the under-represented groups. Our system applies quality and outlier-detection tests to ensure the quality and semantic integrity of the generated tuples. In order to minimize the rejection chance of the generated tuples, we propose multiple strategies to provide a guide for the foundation model. Our experiment results, in addition to confirming the efficiency of our proposed algorithms, illustrate our approach's effectiveness, as the model's unfairness in a downstream task significantly dropped after data repair using Chameleon.more » « less
-
Shahbazi, Nima; Erfanian, Mahdi; Asudeh, Abolfazl; Nargesian, Fatemeh; Srivastava, Divesh (, Proceedings of the VLDB Endowment)
-
Shahbazi, Nima; Erfanian, Mahdi; Asudeh, Abolfazl (, A Quarterly bulletin of the IEEE Computer Society Technical Committee on Database Engineering)
An official website of the United States government

Full Text Available